報 告 人:鄧科財 副教授
報告題目:On antimagic labeling of bipartite graphs
報告時間:2025年4月16日(周三)上午10:00
報告地點:騰訊會議 147-707-080
主辦單位:數學與統計學院、數學研究院、科學技術研究院
報告人簡介:
鄧科財,畢業于廈門大學數學科學學院,師從錢建國教授和張福基教授。目前就職于華僑大學數學科學學院,副教授,碩士生導師。主要研究圖的染色、極值圖論等,發表學術論文20余篇,主持國家自然科學基金青年項目1項,福建省自然科學基金一項,擔任福建省運籌學會理事。
報告摘要:
An antimagic labeling of a graph $G$ of size $m$ is a one-to-one mapping $f: E_G\rightarrow\{1,2,\ldots,m\}$, ensuring that the vertex sums in $V_G$ are pairwise distinct, where a vertex sum of a vertex $v$ in $V_G$ is defined as the sum of the labels of the edges incident to $v$. A graphis called antimagic if it admits an antimagic labeling. The Antimagic Conjecture, proposed by Hartsfield and Ringel in 1990, posits that every connected graph other than $K_2$ is antimagic. We shows that every bipartite graph with minimum degree at least 15 is antimagic. Our approach primarily utilizes a consequence of K\{o}nig's Theorem, the existence of a subgraph of certain size without Eulerian component, and a labeling lemma that allows certain vertex sums to be divisible by 3, while others are not.