日韩午夜电影av,色综合久久久久久中文网,日韩美女视频一区二区,精品不卡视频

6月4日 蔣飛達教授學術報告(數學與統計學院)

來源:數學行政作者:時間:2025-05-30瀏覽:61設置

告 人:蔣飛達 教授

報告題目:Purely interior estimates for a kind of two dimensional Monge-Ampere equations

報告時間:202564日(周三)上午10:00-11:00

報告地點:泉山17號樓101

主辦單位:數學與統計學院、數學研究院、科學技術研究院

報告人簡介:

蔣飛達,東南大學數學學院與丘成桐中心教授,博士生導師。研究領域為非線性偏微分方程。主要涉及Monge-Ampere型方程、k-Hessian型方程等完全非線性偏微分方程、及其在最優質量傳輸、幾何光學等問題中的應用;以及其他各類偏微分方程的理論和應用問題。已在Adv. Math.,Comm. Partial Differential Equations,Calc. Var. Partial Differential Equations,Arch. Ration. Mech. Anal.等權威數學期刊上發表30余篇學術論文。

報告摘要:

In this talk, we discuss a kind of fully nonlinear equations of Monge-Ampere type, which can be applied to problems arising in optimal transport, geometric optics and conformal geometry. When the coefficient of the regular term has positive lower bound, the purely interior Hessian estimate is already known for higher dimensional case. When the coefficient of the regular term is equal to zero, singular solutions can be constructed for $n\ge 3$, while the purely interior Hessian estimate is obtained for $n=2$ case. As a byproduct, anew and simpleproofof the purely interior Hessianestimate for the two dimensional standard Monge-Ampere equation is provided.




返回原圖
/

主站蜘蛛池模板: 广元市| 启东市| 荣昌县| 连城县| 开远市| 繁昌县| 偏关县| 壤塘县| 辽源市| 那曲县| 随州市| 清涧县| 石渠县| 桓台县| 平凉市| 鄂尔多斯市| 望城县| 二连浩特市| 屏山县| 双城市| 康马县| 邮箱| 桃江县| 枝江市| 视频| 平和县| 万源市| 阳原县| 京山县| 江北区| 常山县| 友谊县| 靖宇县| 江阴市| 丹东市| 印江| 玛曲县| 基隆市| 抚远县| 镇赉县| 维西|