日韩午夜电影av,色综合久久久久久中文网,日韩美女视频一区二区,精品不卡视频

10月10日 Brian Hall 教授學(xué)術(shù)報告(數(shù)學(xué)與統(tǒng)計學(xué)院)

來源:數(shù)學(xué)行政作者:時間:2023-10-08瀏覽:337設(shè)置

報 告 人:Brian Hall 教授  

報告題目:Heat flow, random matrices, and random polynomials

報告時間:2023年10月10日(周二)上午9點-10點

報告地點:Zoom會議號: 81786229179 (無密碼)

主辦單位:數(shù)學(xué)研究院、數(shù)學(xué)與統(tǒng)計學(xué)院、科學(xué)技術(shù)研究院

報告人簡介:

       Brian Hall是美國圣母大學(xué)數(shù)學(xué)系教授,主要研究興趣為數(shù)學(xué)物理,包括Segal-Bargmann transform的推廣以及與2維Yang-Mills理論有關(guān)的問題。近幾年來主要關(guān)注隨機矩陣理論以及自由概率論。

報告摘要:

       It is an old result of Polya and Benz that applying the backward heat flow to a polynomial with all real zeros gives another polynomial with all real zeros. Much more recently, the limiting behavior of the real zeros as the degree goes to infinity has been worked out, with a surprising connection to random matrix theory. The situation is more complicated if we use the forward heat flow—in which case, the zeros will not remain real—or if we apply the heat flow to a polynomial with complex roots. Nevertheless, there is still a conjectural connection to random matrix theory. Consider, for example, the circular law in random matrix theory: If a random matrix Z has i.i.d. entries, its eigenvalues will be asymptotically uniform over a disk. The heat flow then conjecturally changes the circular law into the elliptical law: Applying the heat flow to the characteristic polynomial of Z should give a new polynomial whose zeros are asymptotically uniform over an ellipse. While the random matrix case remains a conjecture, we have rigorous results for random polynomials with independent coefficients. This is joint work with Ching Wei Ho, Jonas Jalowy, and Zakhar Kabluchko. The talk will be self-contained and have lots of pictures and animations.

 



返回原圖
/

主站蜘蛛池模板: 全南县| 保康县| 南澳县| 新乡市| 慈利县| 巴中市| 永康市| 茌平县| 灵台县| 普兰县| 左权县| 和林格尔县| 双流县| 罗田县| 洪雅县| 乐亭县| 罗源县| 茂名市| 石嘴山市| 社会| 六枝特区| 封开县| 洪洞县| 夏津县| 堆龙德庆县| 海盐县| 含山县| 河曲县| 安多县| 晋州市| 麻栗坡县| 慈溪市| 凤翔县| 斗六市| 龙海市| 会宁县| 彰武县| 金秀| 榆树市| 西乌| 齐齐哈尔市|