報(bào) 告 人:朱湘禪 研究員
報(bào)告題目:Stochastic Navier-Stokes equations via convex integration
報(bào)告時(shí)間:2023年11月29日(周三)下午16:00-16:50
報(bào)告地點(diǎn):騰訊會(huì)議:867-643-3509
主辦單位:數(shù)學(xué)與統(tǒng)計(jì)學(xué)院、數(shù)學(xué)研究院、科學(xué)技術(shù)研究院
報(bào)告人簡(jiǎn)介:
朱湘禪,中科院數(shù)學(xué)與系統(tǒng)科學(xué)研究院研究員,博士生導(dǎo)師。博士畢業(yè)于北京大學(xué)和德國(guó)比勒菲爾德大學(xué),主要從事隨機(jī)偏微分方程,隨機(jī)分析和狄氏型理論等相關(guān)研究。目前已在Comm. Pure Appl. Math., J. Eur. Math. Soc., Ann. Probab., Probab., Theory Related Fields, Arch. Ration. Mech. Anal., Comm. Math. Phys., J. Funct. Anal., Trans. Amer. Math. Soc.等高水平期刊發(fā)表論文30余篇。
報(bào)告摘要:
In this talk, I will talk about our recent work on the three dimensional stochastic Navier-Stokes equations via convex integration method. First we establish non-uniqueness in law, existence and non-uniqueness of probabilistically strong solutions and non-uniqueness of the associated Markov processes. Second we prove existence of infinitely many stationary solutions as well as ergodic stationary solutions to the stochastic Navier-Stokes and Euler equations. Third we obtain global-in-time existence and non-uniqueness of probabilistically strong solutions to the three dimensional Navier–Stokes system driven by space-time white noise. In this setting, the convective term is ill-defined in the classical sense and probabilistic renormalization is required.