報 告 人:惠昌常 教授
報告題目:On Tachikawa’s second conjecture
報告時間:2024年03月08日(周五)下午14:00-15:00
報告地點:靜遠樓1508學術報告廳
主辦單位:數學與統計學院、數學研究院、科學技術研究院
報告人簡介:
惠昌常,首都師范大學數學科學學院特聘教授,博士生導師,教育部國家高層次人才獲得者。主要從事代數表示論的研究,在J. Rein Ang. Math., Adv. Math., Proc London Math. Soc., Math. Ann., Comm. Math. Phys,Trans Amer Math. Soc., J. Algebra, J. Pure Appl. Algebra等國際著名期刊發表論文90余篇。現為J. Algebra和Archiv der Mathematik的編委,曾獲教育部科技進步二等獎、德國“年輕杰出學者洪堡獎”。
報告摘要:
In the representation theory and homological algebra of finite-dimensional algebras, one of the most prominent conjectures is the long-standing and not yet solved Nakayama conjecture, saying that a finite-dimensional algebra over a field with infinite dominant dimension should be selfinjective. This conjecture is equivalent to the combination of two conjectures by Tachikawa, where the second conjecture states that an orthogonal module over a self-injective algebra should be projective. In this talk we consider Tachikawa’s second conjecture for symmetric algebras. We give a new formulation of this conjecture for symmetric algebras in terms of derived recollements of algebras. The talk presents parts of a joint work with H. X. Chen and M. Fang.