報 告 人:杜一宏 教授
報告題目:Propagation dynamics of reaction-diffusion equations with a new free boundary condition
報告時間:2024年04月30日(周二)上午10:00-11:00
報告地點:靜遠樓1508學術報告廳
主辦單位:數學與統計學院、數學研究院、科學技術研究院
報告人簡介:
杜一宏, 澳大利亞科學院院士, 博士生導師,1962年出生。于1978年至1988年在山東大學獲得學士、碩士和博士學位,導師為郭大鈞教授。1988年至1991年赴英國Heriot-Watt University大學做Research Fellow,1991年至1992年在澳大利亞新英格蘭大學做Research Fellow,合作導師為國際著名數學家、澳大利亞科學院院士E.N. Dancer教授。隨后歷任澳大利亞新英格蘭大學講師、高級講師、副教授、教授。2021年當選澳大利亞科學院院士。目前主要研究興趣包括非線性橢圓型和拋物型偏微分方程、自由邊界問題、非線性泛函分析及其應用。已在國際一流數學雜志包括JEMS、ARMA、PLMS、JFA、JMPA、TAMS、AIHP、SIAM、IUMJ、CVPDE、Nonlinearity、JDE等發表學術論文170余篇。已發表論文完全他引次數超過5000次,多次入選Web of Science高被引學者。出版個人研究專著1部。多次組織國際性學術會議,多次擔任國際大會執行和學術委員會委員,多次被邀請參加國際學術會議并做全會報告或者邀請報告。獲校長杰出研究獎(Vice-Chancellor's Award for Excellence in Research)。已連續多次主持澳大利亞國家研究基金(ARC)。
報告摘要:
I will report some recent results on the reaction diffusion equation $u_t-du_{xx}=f(u)$ with standard nonlinear functions $f(u)$ over a changing interval $[g(t), h(t)]$, viewed as a model for the spreading of a species with population range $[g (t), h(t)]$ and density $u(t,x)$.
The free boundaries $x=g(t)$ and $x=h(t)$ are not governed by the same Stefan condition as in Du and Lin (2010) and other previous works; instead, they satisfy a related but different set of equations obtained from a “preferred population density” assumption at the range boundary, which allows the population range to shrink as well as to expand. I will demonstrate that the longtime dynamics of the model exhibits persistent propagation with a finite asymptotic propagation speed determined by a certain semi-wave solution, and the density function converges to the semi-wave profile as time goes to infinity. The asymptotic propagation speed is always smaller than that of the corresponding classical Cauchy problem where the reaction-diffusion equation is satisfied for $x$ over the entire real line with no free boundary. Moreover, when the preferred population density used in the free boundary condition converges to 0, the solution $u$ of our free boundary problem converges to the solution of the corresponding classical Cauchy problem, and the propagation speed also converges to that of the Cauchy problem.