報 告 人:朱利平 教授
報告題目:A Goodness-of-fit Assessment for General Learning Procedure in High Dimensions
報告時間:2024年10月27日(周日)上午10:00
報告地點:靜遠樓1506學術報告廳
主辦單位:數學研究院、數學與統計學院、科學技術研究院
報告人簡介:
朱利平,中國人民大學教授、博士生導師,學校和理工學部學術委員會委員,統計與大數據研究院院長,人民教育出版社普通高中教科書《數學》聯合主編,國家重大人才工程入選者,國家杰出青年科學基金獲得者,國家重點研發計劃首席科學家,兼任中國現場統計研究會生存分析分會理事長和高維數據統計分會副理事長等。先后受邀擔任國際統計學領域頂級學術期刊《統計年刊》、國際權威學術期刊《中華統計學》和《多元分析》等副主編,以及國內統計學領域頂級學術期刊《中國科學·數學》(中、英文版)、《系統科學與數學》(中、英文版)和《應用概率統計》等青年編委、編委和副主編等。
報告摘要:
Black-box learners have demonstrated remarkable success across various fields due to their high predictive accuracy. However, the complexity of their learning procedures poses significant challenges in evaluating whether a given learner has achieved optimal performance on datasets with unknown data-generating mecha-nisms. We propose a general goodness-of-fit test for assessing different learning procedures involving high-dimensional predictors, encompassing methods from classical linear regression to advanced neural networks. Our goodness-of-fit test leverages data-splitting, utilizing the test set to evaluate the black-box learner trained on the training set. This evaluation is based on examining the cumulative covariance of the residuals. Extensive simulations and two real data analyses validate the effectiveness of our method.