報 告 人:陳振慶 教授
報告題目:Boundary Harnack principle for diffusion processes with jumps
報告時間:2024年11月20日(星期三)下午3:30
報告地點:靜遠樓1506學術報告廳
主辦單位:數學研究院、數學與統計學院、科學技術研究院
報告人簡介:
陳振慶,美國華盛頓大學(西雅圖)數學系教授,分別于2007年和2014年當選為美國數理統計學會士(Fellow)和美國數學學會會士(Fellow)。陳振慶教授主要從事概率論及隨機過程的研究,主要的研究方向包括概率論以及隨機分析,馬爾可夫過程以及狄氏空間理論,隨機微分方程,擴散過程,穩定過程以及偏微分方程中的概率方法等。發表學術論文200余篇,學術專著兩部,國際期刊Potential Analysis的主編,2019年獲伊藤獎 (Ito Prize)。
報告摘要:
The classical boundary Harnack principle asserts that two positive harmonic functions that vanish on a portion of the boundary of a smooth domain decay at the same rate. It is well known that scale invariant boundary Harnack inequality holds for Laplacian \Delta on uniform domains and holds for fractional Laplacians \Delta^s on any open sets. It has been an open problem whether the scale-invariant boundary Harnack inequality holds on bounded Lipschitz domains for Levy processes with Gaussian components such as the independent sum of a Brownian motion and an isotropic stable process (which corresponds to \Delta + \Delta^s).
In this talk, I will present a necessary and sufficient condition for the scale-invariant boundary Harnack inequality to hold for a class of diffusion processes with jumps on metric measure spaces. This result will then be applied to give a sufficient geometric condition for the scale-invariant boundary Harnack inequality to hold for subordinate Brownian motions having Gaussian components on bounded Lipschitz domains in Euclidean spaces. This condition is almost optimal and a counterexample will be given showing that the scale-invariant BHP may fail on some bounded Lipschitz domains with large Lipschitz constants. Based on joint work with Jieming Wang.