日韩午夜电影av,色综合久久久久久中文网,日韩美女视频一区二区,精品不卡视频

12月15日 馮衍全教授學術報告(數學與統計學院)

來源:數學行政作者:時間:2024-12-12瀏覽:75設置

報 告 人:馮衍全 教授

報告題目:Semiregular and quasi-semiregular automorphisms of digraphs

報告時間:2024年12月15日(周日)下午3:00

報告地點:靜遠樓1508會議室

主辦單位:數學與統計學院、數學研究院、科學技術研究院

報告人簡介:

       馮衍全,北京交通大學二級教授,自1997年獲北京大學理學博士學位以來,一直從事代數與組合,群與圖以及互連網絡方面研究。現任中國工業與應用數學學會理事、中國數學會理事等,代數組合JACO等雜志編委。2010年主持《圖的對稱性》獲教育部優秀成果二等獎,2011年獲政府特殊津貼。共發表SCI科研論文150余篇,主持完成國家自然科學基金10余項,包括重點項目1項。正在承擔國家自然科學基金重點項目1項、面上項目1項、國際合作研究項目1項。

報告摘要:

       Let G be a permutation group on a finite set Omega . An non-identity element g in G is said to be semiregular if every cycle in the unique cycle decomposition of g has the same length, and quasi-semiregular if g has an unique 1-cycle in the cycle decomposition of g and every other cycle has the same length. An automorphism of a digraph is called semiregular or quasi-semiregular if it is a semiregular or quasi-semiregular permutation on the vertex set of the digraph. The permutation group G is called 2-closed if G is the largest subgroup of the symmetric group S_Omega on Omega with the same orbits as G on Omega× Omega.

       In 1981 Fein, Kantor and Schacher proved that a transitive permutation group on a finite set with degree at least 2 has an element of prime-power order with no fixed point, but may not have a semiregular element. In the same year, Marusic conjectured that every finite vertex-transitive digraph has a semiregular automorphism, and in 1995, Klin proposed the well-known Polycirculant Conjecture: Every 2-closed transitive permutation group has a semiregular element. Note that the automorphism group of any digraph is 2-closed. In 2013, Kutnar, Malnic, Martanez and Marusic proposed the quasi-semiregular automorphism of a digraph and investigated strongly regular graphs with such an automorphism.

        A lot of work relative to semiregular or quasisemiregular automorphisms of digraphs has been done and in this talk, we review some progress on this line. Furthermore, we talk about a recent work by Yin, Feng, Zhou and Jia [Journal of Combinatorial Theory B 159 (2023) 101-125] on prime-valent symmetric graphs with a quasi-semiregular automorphism.



返回原圖
/

主站蜘蛛池模板: 本溪市| 泰兴市| 万源市| 霍林郭勒市| 安多县| 嵩明县| 潢川县| 商都县| 定日县| 湾仔区| 沂南县| 九江县| 平安县| 清流县| 那曲县| 垣曲县| 启东市| 综艺| 定州市| 武夷山市| 冀州市| 桂阳县| 高平市| 金华市| 浦北县| 馆陶县| 图片| 军事| 三门峡市| 梧州市| 砚山县| 梅州市| 民权县| 柘荣县| 霍城县| 马关县| 桐乡市| 温泉县| 罗源县| 沙河市| 永城市|